Complement component 3 deficiency prolongs MHC-II disparate skin allograft survival by increasing the CD4+ CD25+ regulatory T cells population
نویسندگان
چکیده
Recent reports suggest that complement system contributes to allograft rejection. However, its underlying mechanism is poorly understood. Herein, we investigate the role of complement component 3 (C3) in a single MHC-II molecule mismatched murine model of allograft rejection using C3 deficient mice (C3(-/-)) as skin graft donors or recipients. Compared with C3(+/+) B6 allografts, C3(-/-) B6 grafts dramatically prolonged survival in MHC-II molecule mismatched H-2(bm12) B6 recipients, indicating that C3 plays a critical role in allograft rejection. Compared with C3(+/+) allografts, both Th17 cell infiltration and Th1/Th17 associated cytokine mRNA levels were clearly reduced in C3(-/-) allografts. Moreover, C3(-/-) allografts caused attenuated Th1/Th17 responses, but increased CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cell expression markedly in local intragraft and H-2(bm12) recipients. Depletion of Treg cells by anti-CD25 monoclonal antibody (mAb) negated the survival advantages conferred by C3 deficiency. Our results indicate for the first time that C3 deficiency can prolong MHC-II molecule mismatched skin allograft survival, which is further confirmed to be associated with increased CD4(+) CD25(+) Treg cell population expansion and attenuated Th1/Th17 response.
منابع مشابه
Inhibition of the alloimmune response through the generation of regulatory T cells by a MHC class II-derived peptide.
We have previously shown that HLA-DQA1, a peptide derived from a highly conserved region of MHC class II, prevents alloreactive T cell priming and effector function in vivo, although underlying mechanisms are obscure. In this study, we demonstrate that 28% of mice treated with HLA-DQA1 combined with low-dose rapamycin achieved permanent engraftment of fully MHC-disparate islet allografts and si...
متن کاملRegulatory T Cell Subtypes and TGF-β1 Gene Expression in Chronic Allograft Dysfunction
Background: Regulatory T cells have been suggested to have a protective role against acute rejection in allograft recipients. However, there is little information available about their contribution to chronic rejection process. The role of transforming growth factor-beta 1 (TGF- β1) as a profibrogenic and/or immunoregulatory cytokine in renal allografts is also controversial. Objectives: To eva...
متن کاملIL-17A and IL-2-Expanded Regulatory T Cells Cooperate to Inhibit Th1-Mediated Rejection of MHC II Disparate Skin Grafts
Several evidences suggest that regulatory T cells (Treg) promote Th17 differentiation. Based on this hypothesis, we tested the effect of IL-17A neutralization in a model of skin transplantation in which long-term graft survival depends on a strong in vivo Treg expansion induced by transient exogenous IL-2 administration. As expected, IL-2 supplementation prevented rejection of MHC class II disp...
متن کاملAlloreactive T cell responses and acute rejection of single class II MHC-disparate heart allografts are under strict regulation by CD4+ CD25+ T cells.
Skin but not vascularized cardiac allografts from B6.H-2bm12 mice are acutely rejected by C57BL/6 recipients in response to the single class II MHC disparity. The underlying mechanisms preventing acute rejection of B6.H-2bm12 heart allografts by C57BL/6 recipients were investigated. B6.H-2bm12 heart allografts induced low levels of alloreactive effector T cell priming in C57BL/6 recipients, and...
متن کاملRegulatory function of CD4+CD25+ T cells from Class II MHC-deficient mice in contact hypersensitivity responses.
Contact hypersensitivity (CHS) is a CD8+ T cell-mediated, inflammatory response to hapten sensitization and challenge of the skin. During sensitization, the magnitude and duration of hapten-specific CD8+ T cell expansion in the skin-draining lymph nodes (LN) are restricted by CD4+CD25+ T regulatory cells (Treg). The regulation of hapten-specific CD8+ T cell priming in Class II MHC-deficient (MH...
متن کامل